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Additive Manufacturing at JPL, briefing
Additive Manufacturing Technologies Overview
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Additive Manufacturing Materials, Metallics

Aluminum and titanium alloys comprise 85% of flight structural 
components

Ti-6Al-4V produced via EBM (Arcam) process is baseline for flight use due to 
robust database
JPL primary aluminum alloys are Al 2024, 6061, 7050, 7075

Current AM offering, AlSi10Mg (SAE 4032), doesn’t correspond to
existing alloy classes used by JPL
Challenge to integration due to lack of familiarity

Challenges
Manned spaceflight and Class A missions require A-basis for primary 
structure, B-basis for secondary structure

Database for AlSi10Mg is not publicly available and is expensive for 
limited part set

JPL’s missions are generally single build, so total cost cannot be amortized 
over a single part or part-family



Qualification Methodology (Ti-6Al-4V)

• America Makes
– B-Basis allowables effort current on-going 

to qualify Arcam electron beam melting 
machines (EBM)

– Testing is a partnership between CalRAM
(Camarillo, CA) and Northrop Grumman 
(El Segundo, CA)

– ~ 1300 samples fabricated
– Testing is currently on-going

• Additional testing
– Test matrix is designed for generic 

properties; doesn’t cover all of JPL’s 
needs

– Augmenting test matrix with specimens 
from CalRAM and testing JPL-specific 
conditions (e.g. – 100 ºC fatigue/tension 
behaviors)

Mars Science Laboratory UHF Antenna 
Assembly
• Initial state (above left): 4-piece assembly 

with 6 bolted joints
• Final state (above right): 1-piece assembly
• 19% reduction in mass, as well as part 

count reduction



Qualification Methodology (AlSi10Mg)

• Identification of insertion 
opportunities

– Baseline properties determined through 
focused testing over a variety of 
temperatures (critical to JPL applications)

– Capability determination of 
thermophysical properties

– Testing is currently on-going

• Additional required efforts
– Supplier variability
– Aging

• Proof testing of components
– Requires detailed understanding of actual 

loads and conditions
– Must ensure testing accurately addresses 

concerns

Planetary Instrument for X-ray Lithochemistry
(PIXL), Mars 2020 (Image JPL/NASA)

Element Weight %

Al Balance

Si 9.0-11.0

Mg 0.2-0.45

Fe < 0.55

Mn < 0.45

Ti < 0.15

Zn < 0.1

Cu, Ni, Pb, Sn < 0.05
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As-built microstructures

As-built, unetched, longitudinal (build) orientation; left: bright-field, right: dark-field

As-built, unetched, transverse orientation; left: bright-field, right: dark-field
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Heat treatment effects
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Instron 1331 #395182
Strain-controlled, 0.005 in/in/min
ASTM E8

As-built, 
EOSM280

JPL HT

Standardized heat treatment
6 hrs at 538 °C (Ar)
Quench (H2O) to 25 °C
158 °C, 2 – 4 hrs

Elongation
As-HIP’ped: 30% ± 2.3%
Heat treated: 15% ± 1.4%

10 data points per condition

Alexopoulos and Pantelakis, Materials & Design, 25 (2004) 419-430.
Rometsch and Schaffer, Materials Science & Engineering A, A325 (2002) 424-434.
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Heat treatment microstructure

Standardized heat treatment
6 hrs at 538 °C (Ar)
Quench (H2O) to 25 °C
158 °C, 2 – 4 hrs

25 μm
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Heat treatment microstructure
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Surface finish effects
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Tensile behavior of AlSi10Mg
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Additively Manufactured Aluminum Insertion (cont.)
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Vendor Comparison
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Non-destructive Evaluation (NDE)

1. CT inspection has not revealed 
when parameters aren’t 
focused; with different 
parameters, flaws become 
evident (far right).

2. Larger defects (ultrasonic 
additive, left) apparent at 
different scales.

3. Building a series of samples 
with known flaws for evaluation 
with multiple techniques (e.g. 
CT, ultrasonic, etc.) to compare 
viability for inspection

4. Migration of porosity noted 
during HIP’ping.
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Qualification Approach

1. Organic development of mechanical properties based upon program need.
1. Require all projects to build standard geometry specimens and perform 

limited testing.
2. Aim for common property needs (e.g. thermal conductivity, stress vs. 

strain, etc.)
3. Programs requiring non-standard properties pay for testing (e.g. fatigue)

2. Focus on a limited set of alloys.
1. AlSi10Mg is a potential replacement for some Al alloys
2. Ti-6Al-4V can be utilized as a drop in (ELI version for specialty needs).

3. Materials & Processes focused on informed decisions for AM insertion onto 
flight programs.
1. Avoiding improper usage (e.g. flat plate)
2. Understanding complete process flow for post-build challenges (e.g. 

joining, surface finish, etc.)
3. Understand nature of desired component
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